1. 为什么需要分库分表

不管是 IO 瓶颈,还是 CPU 瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务 Service 来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

1.1 IO 瓶颈

  1. 磁盘读 IO 瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的 IO,降低查询速度 -> 分库和垂直分表。
  2. 网络 IO 瓶颈,请求的数据太多,网络带宽不够 -> 分库。

1.2 CPU 瓶颈

  1. SQL问题,如 SQL 中包含 join,group by,order by,非索引字段条件查询等,增加 CPU 运算的操作 -> SQL优化,建立合适的索引,在业务 Service 层进行业务计算。
  2. 单表数据量太大,查询时扫描的行太多,SQL 效率低,CPU 率先出现瓶颈 -> 水平分表。

2. 水平分库

MySQL 常用分库分表方案,都在这里了!_MySQL_02

概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
结果:

  • 每个库的结构都一样;
  • 每个库的数据都不一样,没有交集;
  • 所有库的并集是全量数据;

场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
分析:库多了,io 和 cpu 的压力自然可以成倍缓解。

3. 垂直分库

MySQL 常用分库分表方案,都在这里了!_MySQL_04

概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
结果:

  • 每个库的结构都不一样;
  • 每个库的数据也不一样,没有交集;
  • 所有库的并集是全量数据;

场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。
分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

4. 水平分表

MySQL 常用分库分表方案,都在这里了!_MySQL_03

概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
结果:

  • 每个表的结构都一样;
  • 每个表的数据都不一样,没有交集;
  • 所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了 SQL 效率,加重了 CPU 负担,以至于成为瓶颈。
分析:表的数据量少了,单次 SQL 执行效率高,自然减轻了 CPU 的负担。

5. 垂直分表

MySQL 常用分库分表方案,都在这里了!_MySQL_05

概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
结果:

  • 每个表的结构都不一样;
  • 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
  • 所有表的并集是全量数据;

场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读 IO,产生 IO 瓶颈。

分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读 IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用 join,因为 join 不仅会增加 CPU 负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务 Service 层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

6. 非 partition key 查询问题

基于水平分库分表,拆分策略为常用的 hash 法。

6.1 一个非 partition key 查询

映射法

MySQL 常用分库分表方案,都在这里了!_MySQL_06

基因法

MySQL 常用分库分表方案,都在这里了!_MySQL_07

例如要分 8 张表,2^3=8,故 x 取3,即 3bit 基因。根据 user_id 查询时可直接取模路由到对应的分库或分表。

根据 user_name 查询时,先通过 user_name_code 生成函数生成 user_name_code 再对其取模路由到对应的分库或分表。id 生成常用 snowflake 算法。

6.2 多个非 partition key 查询

映射法

MySQL 常用分库分表方案,都在这里了!_MySQL_08

冗余法

按照 order_id 或 buyer_id 查询时路由到 db_o_buyer 库中,按照 seller_id 查询时路由到 db_o_seller 库中。

数据冗余,两套数据完全一样,只是分割字段不同。

MySQL 常用分库分表方案,都在这里了!_MySQL_09

7. 跨表查询问题

全局表

所谓全局表,就是有可能系统中所有模块都可能会依赖到的一些表。比较类似我们理解的“数据字典”。为了避免跨库 join 查询,我们可以将这类表在其他每个数据库中均保存一份。同时,这类数据通常也很少发生修改(甚至几乎不会),所以也不用太担心“一致性”问题。

字段冗余

这是一种典型的反范式设计,在互联网行业中比较常见,通常是为了性能来避免 join 查询。

举个电商业务中很简单的场景:

“订单表”中保存“卖家Id”的同时,将卖家的“Name”字段也冗余,这样查询订单详情的时候就不需要再去查询“卖家用户表”。

字段冗余能带来便利,是一种“空间换时间”的体现。但其适用场景也比较有限,比较适合依赖字段较少的情况。最复杂的还是数据一致性问题,这点很难保证,可以借助数据库中的触发器或者在业务代码层面去保证。当然,也需要结合实际业务场景来看一致性的要求。就像上面例子,如果卖家修改了 Name 之后,是否需要在订单信息中同步更新呢?