参考链接 据结构——线段树

引例

  1. 给出n个数,n<=100,和m个询问,每次询问区间[l,r]的和,并输出。
    一种回答:这也太简单了,O(n)枚举搜索就行了。
    另一种回答:还用得着o(n)枚举,前缀和o(1)就搞定。
    那好,我再修改一下题目。

  2. 给出n个数,n<=100,和m个操作,每个操作可能有两种:1、在某个位置加上一个数;2、询问区间[l,r]的和,并输出。
    回答:o(n)枚举。
    动态修改最起码不能用静态的前缀和做了。
    好,我再修改题目:

  3. 给出n个数,n<=1000000,和m个操作,每个操作可能有两种:1、在某个位置加上一个数;2、询问区间[l,r]的和,并输出。
    回答:o(n)枚举绝对超时。
    再改:

  4. 给出n个数,n<=1000000,和m个操作,每个操作修改一段连续区间[a,b]的值
    回答:从a枚举到b,一个一个改。。。。。。有点儿常识的人都知道超时
    那怎么办?这就需要一种强大的数据结构:线段树。

基本概念

  1. 线段树是一棵二叉搜索树,它储存的是一个区间的信息。
  2. 每个节点以结构体的方式存储,结构体包含以下几个信息:
    • 区间左端点、右端点;(这两者必有)
    • 这个区间要维护的信息(事实际情况而定,数目不等)。
  3. 线段树的基本思想:二分。
  4. 线段树一般结构如图所示:

105683420170105203630800980605038.jpg

  1. 特殊性质:

由上图可得,

  • 每个节点的左孩子区间范围为[l,mid],右孩子为[mid+1,r]
  • 对于结点k,左孩子结点为2k,右孩子为2k+1,这符合完全二叉树的性质

线段树的基础操作

注:以下基础操作均以引例中的求和为例,结构体以此为例:

struct node
{
       int l,r,w;//l,r分别表示区间左右端点,w表示区间和
}tree[4*n+1];

线段树的基础操作主要有5个:
建树、单点查询、单点修改、区间查询、区间修改。

1、建树,即建立一棵线段树

① 主体思路:

  • 对于二分到的每一个结点,给它的左右端点确定范围。
  • 如果是叶子节点,存储要维护的信息。
  • 状态合并。

②代码

void build(int l,int r,int k)
{
    tree[k].l=l;tree[k].r=r;
    if(l==r)//叶子节点 
    {
        scanf("%d",&tree[k].w);
        return ; 
    }
    int m=(l+r)/2;
    build(l,m,k*2);//左孩子 
    build(m+1,r,k*2+1);//右孩子 
    tree[k].w=tree[k*2].w+tree[k*2+1].w;//状态合并,此结点的w=两个孩子的w之和 
}

③注意

  • 结构体要开4倍空间,为啥自己画一个[1,10]的线段树就懂了
  • 千万不要漏了return语句,因为到了叶子节点不需要再继续递归了。

2、单点查询,即查询一个点的状态,设待查询点为x

①主体思路:与二分查询法基本一致,如果当前枚举的点左右端点相等,即叶子节点,就是目标节点。如果不是,因为这是二分法,所以设查询位置为x,当前结点区间范围为了l,r,中点为 mid,则如果x<=mid,则递归它的左孩子,否则递归它的右孩子

②代码

void ask(int k)
{
    if(tree[k].l==tree[k].r) //当前结点的左右端点相等,是叶子节点,是最终答案 
    {
        ans=tree[k].w;
        return ;
    }
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) ask(k*2);//目标位置比中点靠左,就递归左孩子 
    else ask(k*2+1);//反之,递归右孩子 
}

③正确性分析:
因为如果不是目标位置,由if—else语句对目标位置定位,逐步缩小目标范围,最后一定能只到达目标叶子节点。

3、单点修改,即更改某一个点的状态。用引例中的例子,对第x个数加上y

①主体思路
结合单点查询的原理,找到x的位置;根据建树状态合并的原理,修改每个结点的状态。

1056834201701052143388782092313389.jpg

②代码

void add(int k)
{
    if(tree[k].l==tree[k].r)//找到目标位置 
    {
        tree[k].w+=y;
        return;
    }
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) add(k*2);
    else add(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;//所有包含结点k的结点状态更新 
}

4、区间查询,即查询一段区间的状态,在引例中为查询区间[x,y]的和

①主体思路

20190204115306271.png

20190204115404357.png

mid=(l+r)/2
y<=mid ,即 查询区间全在,当前区间的左子区间,往左孩子走
x>mid 即 查询区间全在,当前区间的右子区间,往右孩子走
否则,两个子区间都走

②代码

void sum(int k)
{
    if(tree[k].l>=x&&tree[k].r<=y) 
    {
        ans+=tree[k].w;
        return;
    }
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) sum(k*2);
    if(y>m) sum(k*2+1);
}

③正确性分析

情况1,3不用说,对于情况2,最差情况是搜到叶子节点,此时一定满足情况1

5、区间修改,即修改一段连续区间的值,我们已给区间[a,b]的每个数都加x为例讲解

Ⅰ.引子
1056834201701070822538621637203209.jpg

有人可能就想到了:
修改的时候只修改对查询有用的点。
对,这就是区间修改的关键思路。
为了实现这个,我们引入一个新的状态——懒标记。

Ⅱ 懒标记

(懒标记比较难理解,我尽力讲明白。。。。。。)

  1. 直观理解:“懒”标记,懒嘛!用到它才动,不用它就睡觉。
  2. 作用:存储到这个节点的修改信息,暂时不把修改信息传到子节点。就像家长扣零花钱,你用的时候才给你,不用不给你。
  3. 实现思路(重点):
    3.1 原结构体中增加新的变量,存储这个懒标记。
    3.2 递归到这个节点时,只更新这个节点的状态,并把当前的更改值累积到标记中。 注意是累积,可以这样理解:过年,很多个亲戚都给你压岁钱,但你暂时不用,所以都被你父母扣下了。
    3.3 什么时候才用到这个懒标记?**当需要递归这个节点的子节点时,标记下传给子节点。**这里不必管用哪个子节点,两个都传下去。就像你如果还有妹妹,父母给你们零花钱时总不能偏心吧
    3.4 下传操作:3部分:
    • 当前节点的懒标记累积到子节点的懒标记中。

    • 修改子节点状态。 在引例中,就是原状态+子节点区间点的个数*父节点传下来的懒标记。
      这就有疑问了,既然父节点都把标记传下来了,为什么还要乘父节点的懒标记,乘自己的不行吗?
      因为自己的标记可能是父节点多次传下来的累积,每次都乘自己的懒标记造成重复累积

    • 父节点懒标记清0。 这个懒标记已经传下去了,不清0后面再用这个懒标记时会重复下传。就像你父母给了你5元钱,你不能说因为前几次给了你10元钱, 所以这次给了你15元,那你不就亏大了。

      懒标记下穿代码:f为懒标记,其余变量与前面含义一致。

void down(int k)
{
    tree[k*2].f+=tree[k].f;
    tree[k*2+1].f+=tree[k].f;
    tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
    tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
    tree[k].f=0;
}

Ⅲ 完整的区间修改代码:

void add(int k)
{
    if(tree[k].l>=a&&tree[k].r<=b)//当前区间全部对要修改的区间有用 
    {
        tree[k].w+=(tree[k].r-tree[k].l+1)*x;//(r-1)+1区间点的总数
        tree[k].f+=x;
        return;
    }
    if(tree[k].f) down(k);//懒标记下传。只有不满足上面的if条件才执行,所以一定会用到当前节点的子节点 
    int m=(tree[k].l+tree[k].r)/2;
    if(a<=m) add(k*2);
    if(b>m) add(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;//更改区间状态 
}

Ⅳ.懒标记的引入对其他基本操作的影响

因为引入了懒标记,很多用不着的更改状态存了起来,这就会对区间查询、单点查询造成一定的影响。

所以在使用了懒标记的程序中,单点查询、区间查询也要像区间修改那样,对用得到的懒标记下传。 其实就是加上一句if(tree[k].f) down(k),其余不变。

引入了懒标记的单点查询代码:

void ask(int k)//单点查询
{
    if(tree[k].l==tree[k].r)
    {
        ans=tree[k].w;
        return ;
    }
    if(tree[k].f) down(k);//懒标记下传,唯一需要更改的地方
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) ask(k*2);
    else ask(k*2+1);
}

引入了懒标记的区间查询代码:

void sum(int k)//区间查询
{
    if(tree[k].l>=x&&tree[k].r<=y) 
    {
        ans+=tree[k].w;
        return;
    }
    if(tree[k].f)  down(k)//懒标记下传,唯一需要更改的地方
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) sum(k*2);
    if(y>m) sum(k*2+1);
}

总结

线段树5种基本操作代码:

#include<cstdio>
using namespace std;
int n,p,a,b,m,x,y,ans;
struct node
{
    int l,r,w,f;
}tree[400001];
inline void build(int k,int ll,int rr)//建树 
{
    tree[k].l=ll,tree[k].r=rr;
    if(tree[k].l==tree[k].r)
    {
        scanf("%d",&tree[k].w);
        return;
    }
    int m=(ll+rr)/2;
    build(k*2,ll,m);
    build(k*2+1,m+1,rr);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void down(int k)//标记下传 
{
    tree[k*2].f+=tree[k].f;
    tree[k*2+1].f+=tree[k].f;
    tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
    tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
    tree[k].f=0;
}
inline void ask_point(int k)//单点查询
{
    if(tree[k].l==tree[k].r)
    {
        ans=tree[k].w;
        return ;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) ask_point(k*2);
    else ask_point(k*2+1);
}
inline void change_point(int k)//单点修改 
{
    if(tree[k].l==tree[k].r)
    {
        tree[k].w+=y;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) change_point(k*2);
    else change_point(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w; 
}
inline void ask_interval(int k)//区间查询 
{
    if(tree[k].l>=a&&tree[k].r<=b) 
    {
        ans+=tree[k].w;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(a<=m) ask_interval(k*2);
    if(b>m) ask_interval(k*2+1);
}
inline void change_interval(int k)//区间修改 
{
    if(tree[k].l>=a&&tree[k].r<=b)
    {
        tree[k].w+=(tree[k].r-tree[k].l+1)*y;
        tree[k].f+=y;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(a<=m) change_interval(k*2);
    if(b>m) change_interval(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
int main()
{
    scanf("%d",&n);//n个节点 
    build(1,1,n);//建树 
    scanf("%d",&m);//m种操作 
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&p);
        ans=0;
        if(p==1)
        {
            scanf("%d",&x);
            ask_point(1);//单点查询,输出第x个数 
            printf("%d",ans);
        } 
        else if(p==2)
        {
            scanf("%d%d",&x,&y);
            change_point(1);//单点修改 
        }
        else if(p==3)
        {
            scanf("%d%d",&a,&b);//区间查询 
            ask_interval(1);
            printf("%d\n",ans);
        }
        else
        {
             scanf("%d%d%d",&a,&b,&y);//区间修改 
             change_interval(1);
        }
    }
}

空间优化

父节点k,左二子2k,右儿子2k+1,需要4n的空间
但并不是所有的叶子节点占用到2n+1——4n
这就造成大量空间浪费
2
n空间表示法:推荐博客:http://www.cppblog.com/MatoNo1/archive/2015/05/05/195857.html
用dfs序表示做节点下标
父节点k,左儿子k+1,右儿子:k+左儿子区间长度*2,不是父节点下标+父节点区间长度。因为当树不满时,两者不相等
具体实现这里就不再写模板了,就是改改左右儿子的下标
可参考代码: 题目:楼房重建http://www.cnblogs.com/TheRoadToTheGold/p/6361242.html

里面的建树用的2*n空间

模板题

1、codevs 1080 线段树练习 (单点修改+区间查询)

#include<cstdio>
using namespace std;
int n,m,p,x,y,ans;
struct node
{
    int l,r,w;
}tree[400001];
inline void build(int l,int r,int k)
{
    tree[k].l=l;tree[k].r=r;
    if(l==r) 
    {
        scanf("%d",&tree[k].w);
        return ;
    }
    int m=(l+r)/2;
    build(l,m,k*2);
    build(m+1,r,k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void add(int k)
{
    if(tree[k].l==tree[k].r)
    {
        tree[k].w+=y;
        return;
    }
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) add(k*2);
    else add(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w; 
}
inline void sum(int k)
{
    if(tree[k].l>=x&&tree[k].r<=y) 
    {
        ans+=tree[k].w;
        return;
    }
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) sum(k*2);
    if(y>m) sum(k*2+1);
}
int main()
{
    scanf("%d",&n);
    build(1,n,1);
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&p,&x,&y);
        ans=0;
        if(p==1) add(1);
        else 
        {
            sum(1);
            printf("%d\n",ans);
        }
    }
}

2、 codevs 1081 线段树练习2 (单点查询+区间修改)

#include<cstdio>
using namespace std;
int n,p,a,b,m,x,ans;
struct node
{
    int l,r,w,f;
}tree[400001];
inline void build(int k,int ll,int rr)
{
    tree[k].l=ll,tree[k].r=rr;
    if(tree[k].l==tree[k].r)
    {
        scanf("%d",&tree[k].w);
        return;
    }
    int m=(ll+rr)/2;
    build(k*2,ll,m);
    build(k*2+1,m+1,rr);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void down(int k)
{
    tree[k*2].f+=tree[k].f;
    tree[k*2+1].f+=tree[k].f;
    tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
    tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
    tree[k].f=0;
}
inline void add(int k)
{
    if(tree[k].l>=a&&tree[k].r<=b)
    {
        tree[k].w+=(tree[k].r-tree[k].l+1)*x;
        tree[k].f+=x;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(a<=m) add(k*2);
    if(b>m) add(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void ask(int k)
{
    if(tree[k].l==tree[k].r)
    {
        ans=tree[k].w;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(x<=m) ask(k*2);
    else ask(k*2+1); 
}
int main()
{
    scanf("%d",&n);
    build(1,1,n);
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&p);
        if(p==1)
        {
            scanf("%d%d%d",&a,&b,&x);
            add(1);
        }
        else
        {
            scanf("%d",&x);
            ask(1);
            printf("%d\n",ans);
        }
    }
}

3、codevs 1082 线段树练习3 (区间修改+区间查询)

#include<cstdio>
using namespace std;
int n,p,a,b,m,x,y;
long long ans;
struct node
{
    long long l,r,w,f;
}tree[800001];
inline void build(int k,int ll,int rr)//建树 
{
    tree[k].l=ll,tree[k].r=rr;
    if(tree[k].l==tree[k].r)
    {
        scanf("%d",&tree[k].w);
        return;
    }
    int m=(ll+rr)/2;
    build(k*2,ll,m);
    build(k*2+1,m+1,rr);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void down(int k)//标记下穿 
{
    tree[k*2].f+=tree[k].f;
    tree[k*2+1].f+=tree[k].f;
    tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
    tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
    tree[k].f=0;
}
inline void ask_interval(int k)//区间查询 
{
    if(tree[k].l>=a&&tree[k].r<=b) 
    {
        ans+=tree[k].w;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(a<=m) ask_interval(k*2);
    if(b>m) ask_interval(k*2+1);
}
inline void change_interval(int k)//区间修改 
{
    if(tree[k].l>=a&&tree[k].r<=b)
    {
        tree[k].w+=(tree[k].r-tree[k].l+1)*y;
        tree[k].f+=y;
        return;
    }
    if(tree[k].f) down(k);
    int m=(tree[k].l+tree[k].r)/2;
    if(a<=m) change_interval(k*2);
    if(b>m) change_interval(k*2+1);
    tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
int main()
{
    scanf("%d",&n); 
    build(1,1,n);
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&p);
        ans=0;
        if(p==1) 
        {
             scanf("%d%d%d",&a,&b,&y);//区间修改 
             change_interval(1);
        }
        else 
        {
            scanf("%d%d",&a,&b);//区间查询 
            ask_interval(1);
            printf("%lld\n",ans);
        }
    
    }
}

经典例题

codevs 3981/SPOJ GSS1/GSS3 ——区间最大子段和
Bzoj3813 奇数国——区间内某个值是否出现过
洛谷 P2894 酒店 Hotel ——区间连续一段空的长度
codevs 2421 /Bzoj1858 序列操作——多种操作
codevs 2000 / BZOJ 2957: 楼房重建——区间的最长上升子序列
Codevs3044 矩形面积求并——扫描线

代码的话到随笔分类——线段树里找找吧 http://www.cnblogs.com/TheRoadToTheGold/category/933602.html